\(\int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx\) [599]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 250 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\frac {\left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a \left (a^2-b^2\right )^2 d}+\frac {3 \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{4 b \left (a^2-b^2\right )^2 d}-\frac {\left (3 a^4+10 a^2 b^2-b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{4 a (a-b)^2 b (a+b)^3 d}-\frac {b \sqrt {\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))} \]

[Out]

1/4*(5*a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/(a^2-b
^2)^2/d+3/4*(a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b/
(a^2-b^2)^2/d-1/4*(3*a^4+10*a^2*b^2-b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*
x+1/2*c),2*b/(a+b),2^(1/2))/a/(a-b)^2/b/(a+b)^3/d-1/2*b*sin(d*x+c)*cos(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*cos(d*x+c
))^2-1/4*b*(5*a^2+b^2)*sin(d*x+c)*cos(d*x+c)^(1/2)/a/(a^2-b^2)^2/d/(a+b*cos(d*x+c))

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2875, 3134, 3138, 2719, 3081, 2720, 2884} \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\frac {3 \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{4 b d \left (a^2-b^2\right )^2}+\frac {\left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a d \left (a^2-b^2\right )^2}-\frac {b \left (5 a^2+b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{4 a d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac {b \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {\left (3 a^4+10 a^2 b^2-b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{4 a b d (a-b)^2 (a+b)^3} \]

[In]

Int[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x])^3,x]

[Out]

((5*a^2 + b^2)*EllipticE[(c + d*x)/2, 2])/(4*a*(a^2 - b^2)^2*d) + (3*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/(4
*b*(a^2 - b^2)^2*d) - ((3*a^4 + 10*a^2*b^2 - b^4)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(4*a*(a - b)^2*b*
(a + b)^3*d) - (b*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) - (b*(5*a^2 + b^2)
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*a*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2875

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Dist[
1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*c*(m + 1) + b*d*
n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && In
tegersQ[2*m, 2*n]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {b \sqrt {\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {\int \frac {\frac {b}{2}-2 a \cos (c+d x)+\frac {1}{2} b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx}{2 \left (a^2-b^2\right )} \\ & = -\frac {b \sqrt {\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac {\int \frac {\frac {1}{4} b \left (7 a^2-b^2\right )-a \left (2 a^2+b^2\right ) \cos (c+d x)-\frac {1}{4} b \left (5 a^2+b^2\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a \left (a^2-b^2\right )^2} \\ & = -\frac {b \sqrt {\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\int \frac {-\frac {1}{4} b^2 \left (7 a^2-b^2\right )+\frac {3}{4} a b \left (a^2+b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a b \left (a^2-b^2\right )^2}+\frac {\left (5 a^2+b^2\right ) \int \sqrt {\cos (c+d x)} \, dx}{8 a \left (a^2-b^2\right )^2} \\ & = \frac {\left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a \left (a^2-b^2\right )^2 d}-\frac {b \sqrt {\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac {\left (3 \left (a^2+b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{8 b \left (a^2-b^2\right )^2}-\frac {\left (3 a^4+10 a^2 b^2-b^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{8 a b \left (a^2-b^2\right )^2} \\ & = \frac {\left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a \left (a^2-b^2\right )^2 d}+\frac {3 \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{4 b \left (a^2-b^2\right )^2 d}-\frac {\left (3 a^4+10 a^2 b^2-b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{4 a (a-b)^2 b (a+b)^3 d}-\frac {b \sqrt {\cos (c+d x)} \sin (c+d x)}{2 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac {b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 a \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.88 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.16 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\frac {-\frac {4 b \sqrt {\cos (c+d x)} \left (7 a^3-a b^2+b \left (5 a^2+b^2\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}+\frac {\frac {2 \left (-9 a^2 b+3 b^3\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {8 a \left (2 a^2+b^2\right ) \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{b}+\frac {2 \left (5 a^2+b^2\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b \sqrt {\sin ^2(c+d x)}}}{(a-b)^2 (a+b)^2}}{16 a d} \]

[In]

Integrate[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x])^3,x]

[Out]

((-4*b*Sqrt[Cos[c + d*x]]*(7*a^3 - a*b^2 + b*(5*a^2 + b^2)*Cos[c + d*x])*Sin[c + d*x])/((a^2 - b^2)^2*(a + b*C
os[c + d*x])^2) + ((2*(-9*a^2*b + 3*b^3)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (8*a*(2*a^2 + b^
2)*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b + (2*(5*a^2 + b^
2)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] +
 (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]))/
((a - b)^2*(a + b)^2))/(16*a*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1735\) vs. \(2(314)=628\).

Time = 8.23 (sec) , antiderivative size = 1736, normalized size of antiderivative = 6.94

method result size
default \(\text {Expression too large to display}\) \(1736\)

[In]

int(cos(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^3,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2))-1/2/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2/(a^2-b^2)*b/a*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(
a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))-2/b*a*
(-1/2/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x
+1/2*c)^2+a-b)^2-3/4*b^2*(3*a^2-b^2)/a^2/(a^2-b^2)^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-7/8/(a+b)/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
1/4/(a+b)/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b+3/8/(a+b)/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))*b^2-9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)
/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3/8*b^3/a^2/(a^2-b
^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)
)-3/8*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-15/4*a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+3/2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(
1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-3/4/a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos
(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),
-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^3, x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

[In]

int(cos(c + d*x)^(1/2)/(a + b*cos(c + d*x))^3,x)

[Out]

int(cos(c + d*x)^(1/2)/(a + b*cos(c + d*x))^3, x)